Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(26): 10374-10378, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32160395

RESUMO

Peroxygenases are heme-dependent enzymes that use peroxide-borne oxygen to catalyze a wide range of oxyfunctionalization reactions. Herein, we report the engineering of an unusual cofactor-independent peroxygenase based on a promiscuous tautomerase that accepts different hydroperoxides (t-BuOOH and H2 O2 ) to accomplish enantiocomplementary epoxidations of various α,ß-unsaturated aldehydes (citral and substituted cinnamaldehydes), providing access to both enantiomers of the corresponding α,ß-epoxy-aldehydes. High conversions (up to 98 %), high enantioselectivity (up to 98 % ee), and good product yields (50-80 %) were achieved. The reactions likely proceed via a reactive enzyme-bound iminium ion intermediate, allowing tweaking of the enzyme's activity and selectivity by protein engineering. Our results underscore the potential of catalytic promiscuity for the engineering of new cofactor-independent oxidative enzymes.


Assuntos
Compostos de Epóxi/síntese química , Oxigenases de Função Mista/química , Aldeídos/química , Alcenos/química , Biocatálise , Isomerases/genética , Oxigenases de Função Mista/genética , Mutação , Engenharia de Proteínas , Estereoisomerismo
2.
Appl Microbiol Biotechnol ; 102(23): 10091-10102, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267127

RESUMO

Carbohydrate-active enzyme discovery is often not accompanied by experimental validation, demonstrating the need for techniques to analyze substrate specificities of carbohydrate-active enzymes in an efficient manner. DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) is utmost appropriate for the analysis of glycoside hydrolases that have complex substrate specificities. DSA-FACE is demonstrated here to be a highly convenient method for the precise identification of the specificity of different α-L-arabinofuranosidases for (arabino)xylo-oligosaccharides ((A)XOS). The method was validated with two α-L-arabinofuranosidases (EC 3.2.1.55) with well-known specificity, specifically a GH62 α-L-arabinofuranosidase from Aspergillus nidulans (AnAbf62A-m2,3) and a GH43 α-L-arabinofuranosidase from Bifidobacterium adolescentis (BaAXH-d3). Subsequently, application of DSA-FACE revealed the AXOS specificity of two α-L-arabinofuranosidases with previously unknown AXOS specificities. PaAbf62A, a GH62 α-L-arabinofuranosidase from Podospora anserina strain S mat+, was shown to target the O-2 and the O-3 arabinofuranosyl monomers as side chain from mono-substituted ß-D-xylosyl residues, whereas a GH43 α-L-arabinofuranosidase from a metagenomic sample (AGphAbf43) only removes an arabinofuranosyl monomer from the smallest AXOS tested. DSA-FACE excels ionic chromatography in terms of detection limit for (A)XOS (picomolar sensitivity), hands-on and analysis time, and the analysis of the degree of polymerization and binding site of the arabinofuranosyl substituent.


Assuntos
Glicosídeo Hidrolases/metabolismo , Análise de Sequência de DNA , Aspergillus nidulans/enzimologia , Bifidobacterium adolescentis/enzimologia , Carboidratos/análise , Eletroforese , Corantes Fluorescentes , Limite de Detecção , Metagenômica , Podospora/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...